1.
Loopy belief propagation, Markov Random Field, stereo vision
A very nice and detailed tutorial about using belief propagation and MRF to solve the stereo problem. Some maths have been presented clearly and simply. A self-contained belief propagation code for stereo is attached (
main.cpp ).
2.
Stereovision reconstruction system
A project implementing paper: "Segment-Based Stereo Matching Using Belief Propagation and a Self-Adapting Dissimilarity Measure (ICPR 2006)" using OpenCV.
Loopy Belief Propagation code:
A MRF is a grid of node with same size as the image. For each node in the MRF, 5 link is construct to its neighbour and each link contains 'number of label' cells for storing massage.
struct Pixel
{
// Each pixel has 5 'message box' to store incoming data
TYPE msg[5][LABELS];
int best_assignment;
};
struct MRF2D
{
std::vector grid;
int width, height;
};
For every input image pair, we need to initialize the MRF correspondingly. For all the message at the very beginning stage, all message are initialized to 0 (or 1 depends on optimization) which means each node does not have any opinion about its neighbors. For the messages of each node itself, we initialize them based on the DataCost function. The DataCost function can be as simple as the intensity difference.
void InitDataCost(const std::string &left_file, const std::string &right_file, MRF2D &mrf)
{
// Cache the data cost results so we don't have to recompute it every time
// Force greyscale
cv::Mat left = cv::imread(left_file.c_str(), 0);
cv::Mat right = cv::imread(right_file.c_str(), 0);
if(!left.data) {
cerr << "Error reading left image" << endl;
exit(1);
}
if(!right.data) {
cerr << "Error reading right image" << endl;
exit(1);
}
assert(left.channels() == 1);
mrf.width = left.cols;
mrf.height = left.rows;
int total = mrf.width*mrf.height;
mrf.grid.resize(total);
// Initialise all messages to zero
for(int i=0; i < total; i++) {
for(int j=0; j < 5; j++) {
for(int k=0; k < LABELS; k++) {
mrf.grid[i].msg[j][k] = 0;
}
}
}
// Add a border around the image
int border = LABELS;
for(int y=border; y < mrf.height-border; y++) {
for(int x=border; x < mrf.width-border; x++) {
for(int i=0; i < LABELS; i++) {
mrf.grid[y*left.cols+x].msg[DATA][i] = DataCostStereo(left, right, x, y, i);
}
}
}
}
For
propagating the message at each node to different direction (LEFT/RIGHT/UP/DOWN), 'SendMsg' function iterate
every possible labels l for the corresponding link (each link contains multiple messages). For each label,we calculate the minimum cost/energy (Min-Sum BP) out of
all possible labels l'. This minimum cost/energy is recorded for that
label l of the link. Then use this minimum cost to update the message of the neighbor node so that link A-B and B-A has same message now.
void SendMsg(MRF2D &mrf, int x, int y, DIRECTION direction)
{
TYPE new_msg[LABELS];
int width = mrf.width;
for(int i=0; i < LABELS; i++) {
TYPE min_val = UINT_MAX;
for(int j=0; j < LABELS; j++) {
TYPE p = 0;
p += SmoothnessCost(i,j);
p += mrf.grid[y*width+x].msg[DATA][j];
// Exclude the incoming message direction that we are sending to
if(direction != LEFT) p += mrf.grid[y*width+x].msg[LEFT][j];
if(direction != RIGHT) p += mrf.grid[y*width+x].msg[RIGHT][j];
if(direction != UP) p += mrf.grid[y*width+x].msg[UP][j];
if(direction != DOWN) p += mrf.grid[y*width+x].msg[DOWN][j];
min_val = std::min(min_val, p);
}
new_msg[i] = min_val;
}
for(int i=0; i < LABELS; i++) {
switch(direction) {
case LEFT:
mrf.grid[y*width + x-1].msg[RIGHT][i] = new_msg[i];
break;
case RIGHT:
mrf.grid[y*width + x+1].msg[LEFT][i] = new_msg[i];
break;
case UP:
mrf.grid[(y-1)*width + x].msg[DOWN][i] = new_msg[i];
break;
case DOWN:
mrf.grid[(y+1)*width + x].msg[UP][i] = new_msg[i];
break;
default:
assert(0);
break;
}
}
}
For each BP iteration we propagate the message from Left-Right, Right-Left, Up-Down and Down-Up.
void BP(MRF2D &mrf, DIRECTION direction)
{
int width = mrf.width;
int height = mrf.height;
switch(direction) {
case RIGHT:
for(int y=0; y < height; y++) {
for(int x=0; x < width-1; x++) {
SendMsg(mrf, x, y, direction);
}
}
break;
case LEFT:
for(int y=0; y < height; y++) {
for(int x=width-1; x >= 1; x--) {
SendMsg(mrf, x, y, direction);
}
}
break;
case DOWN:
for(int x=0; x < width; x++) {
for(int y=0; y < height-1; y++) {
SendMsg(mrf, x, y, direction);
}
}
break;
case UP:
for(int x=0; x < width; x++) {
for(int y=height-1; y >= 1; y--) {
SendMsg(mrf, x, y, direction);
}
}
break;
case DATA:
assert(0);
break;
}
}
At last, we assign each node (pixel) with the label that minimize the global energy.
TYPE MAP(MRF2D &mrf)
{
// Finds the MAP assignment as well as calculating the energy
// MAP assignment
for(size_t i=0; i < mrf.grid.size(); i++) {
TYPE best = std::numeric_limits::max();
for(int j=0; j < LABELS; j++) {
TYPE cost = 0;
cost += mrf.grid[i].msg[LEFT][j];
cost += mrf.grid[i].msg[RIGHT][j];
cost += mrf.grid[i].msg[UP][j];
cost += mrf.grid[i].msg[DOWN][j];
cost += mrf.grid[i].msg[DATA][j];
if(cost < best) {
best = cost;
mrf.grid[i].best_assignment = j;
}
}
}
int width = mrf.width;
int height = mrf.height;
// Energy
TYPE energy = 0;
for(int y=0; y < mrf.height; y++) {
for(int x=0; x < mrf.width; x++) {
int cur_label = mrf.grid[y*width+x].best_assignment;
// Data cost
energy += mrf.grid[y*width+x].msg[DATA][cur_label];
if(x-1 >= 0) energy += SmoothnessCost(cur_label, mrf.grid[y*width+x-1].best_assignment);
if(x+1 < width) energy += SmoothnessCost(cur_label, mrf.grid[y*width+x+1].best_assignment);
if(y-1 >= 0) energy += SmoothnessCost(cur_label, mrf.grid[(y-1)*width+x].best_assignment);
if(y+1 < height) energy += SmoothnessCost(cur_label, mrf.grid[(y+1)*width+x].best_assignment);
}
}
return energy;
}
Main program which calls above function:
int main()
{
MRF2D mrf;
InitDataCost("tsukuba-imL.png", "tsukuba-imR.png", mrf);
for(int i=0; i < BP_ITERATIONS; i++) {
BP(mrf, RIGHT);
BP(mrf, LEFT);
BP(mrf, UP);
BP(mrf, DOWN);
TYPE energy = MAP(mrf);
}
cv::Mat output = cv::Mat::zeros(mrf.height, mrf.width, CV_8U);
for(int y=LABELS; y < mrf.height-LABELS; y++) {
for(int x=LABELS; x < mrf.width-LABELS; x++) {
// Increase the intensity so we can see it
output.at(y,x) = mrf.grid[y*mrf.width+x].best_assignment * (256/LABELS);
}
}
cv::namedWindow("main", CV_WINDOW_AUTOSIZE);
cv::imshow("main", output);
cv::waitKey(0);
cout << "Saving results to output.png" << endl;
cv::imwrite("output.png", output);
return 0;
}